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AESTRACT

Cascaded E-plane steps in weveguide still find a variety of
uses in microwave components for power applications and in
millimetrics.

Wldeband synthesis requires efficient field analysis, leading to
simple equivalent circuits with frequency independent
elements, so as to avoid repeating the field analysis at each
frequency.

We present the results of an analytical approach in a form
suitable for CAD on a desktop computer.

INTRODUCTION

The widely used modal analysis of weveguide step

dkcontinuties employs the eigenmode of the guiding

structures to represent the field on the dkcontinuities.

Unfortunately, even if the eigenmodes form a complete

basis, their use is particularly inefficient when field’s
singularities due to the edges are present. On the other
hand, in these cases other bases can be used that represent

the fields well. By using the latter bases, it is possible to
obtain very accurate determination of the parameters of the

discontinuity (e.g. the reflection coefficient or the

admittance) even using a single basis function. If, in

addition, lumped modets are provided for the modal

admittance, then simple, wide-band, equivalent circuits can

be derived. Since these circuits contain frequency

independent elements only, they can be efficiently used in

CAD.

ANALYSIS

When an electromagnetic field impinges on the dkcontinuity
of Figure 1 higher order modes are excited in order to

setisf y the boundary condhions. However, if the incident

mode has no electric field component in the x-dkection,

only LSE modes are generated. These modes can be

derived from an x-dkected magnetic vector potential.
Standard textbook analysis provides the expressions for the

field components transverse to the discontinuity. In the
following we assume, with respect to Fig. 1, that p modes

can be incident on the discontinuity from the left, and that
p’ modes can be incident from the right.

By imposing the continuity of the transverse field across the
aperature, and by using linearity, we obtain the following

integral equations for the electric field Ek

Y;’ ‘gk = i%k (1)

where Yk is the normalised admittance of the mode k

incident on the discontinuity, an~ gk represents

the y dependence of this mode. Y is the integral

operator whose kernal is the Green’s admittance

function in the scattering representation

given by

lcn

Y(Y,7) ‘~ Jo ~n ‘%(Y) %(q) + ‘~ P:(Y)

where the pn(y) describe the y-dependence

modes.

Once Ek is found the scattering matrix is

computed as

12
Sik = Yi / <gi, Ek>-~ik

with

~ik= {~
i#k

i=k

and is

P;(?J)]

(2)

of the

easily

(3)

To solve the integral equation (3) by Galerkin method an

appropriate, preferably orthonormal, set of expanding

functions must be selected. Since the weight function of

the Gegenbauer polynomials of order v = 1/6 satisfy the 90°
corner edge condition, these weighted polynomials can be

successfully chosen as the expansion set. Accordhg to the
even parity of the field, and taking into account the

normalisation factor Nm, the expansion Set #m(Y) is

1 1/6 Y
+~(y) ‘+~c~m [;] ‘(Y) m=O, 1, . . ..N-l

m
(4)

‘(Y) = [’- [y1-”3
and Consequently the field Ey is expressed as

N-1
Ek(y) = ~ ~km ‘#m(Y)m= o

(5)
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When (5) is used the equations (1) are

correspondingly mapped into the matrix equations

where the matrix elements are given by

(6)

P;n = ~ ~m(y) p;(y)dy = JE Cm J
,Wl,,(nrs)

(rmrs)
‘/6

o

cm =
‘“”m rr(;:T~2m+ 1/6)”2

Equation (6) is numerically invertible and leads

via (3) to the sought variational expression for

the scattering matrix

(8)

However, in practice, one is interested in the

scattering matrix over a wide frequency band, and

this means that one should recalculate the matrix
~ and its inverse for each frequency point. As

will be evident form the next section, the

dimensions of matrix X, due to the chosen basis,

are very small (i.e. X is 1*1 or at maximum 2*2)
and therefore its inversion is a straightforward

matter. The time-consuming task in the

calculation of (8) is therefore relative to the

sum appearing in (7).

The numerical effort of computing (7) can be

greatly reduced by taking advantage of the

quasi-static approximation for the modes well below

cutoff (n > NF1, NF2)

Y;=:
ju ju

=— n>>u
n n

/1 - (;)2

b
u=—

T
/k: - (:)2

where u is the normalised frequency and is such

that u = O at cutoff of the fundamental mode and

u = 1 at that of the first higher order LSE mode in
the larger guide. By using this approximation we
obtain

NF1-1
Yti=:{E

N;2- 1
‘n ‘mn ‘kn + Y; P’

n= 0 n= ~ mn ‘kn )+

(9)

and while the expression inside the first brackets

needs to be recalculated at such frequency, the

other expression needs to be calculated just once.

Equation (9) still doesn’t provide a simple
equivalent circuit. This can be obtained by

expanding the modal admittances into continuous

fractions up to the second order

Consequently Yn(u

1 ju
—— —— .,f2:5

3n
4 n2

can be represented to a high

degree of approximation by the lumped frequency

independent LC-ring of Fig. 2b. We are now in a

position to draw an entire class of equivalent

circuits depending on the different values of NF1

and NF2 retained, and to the number of basis

functions considered.

RESULTS

An extensive numerical analysis has been carried out in

order to ascertain the convergence of the basis function set

chosen to express the electric field in the aperture. In

table 1 the modulus of the reflection coefficient has been
calculated by using 1,...,4 basis functions incorporating the

900 edge condition. These data have been compared with

the previous results obtained by Rozzi[ll using 2 basis

functions of the type used by Schwinger. Apart from

noting the excellent agreement, it is also possible to verify

that two basis functions always provide stable results, and

that even the first order approximation (one basis function

only) gives very accurate values. This is further confirmed

by the results of table II.

By using the theory developed in section 2 it is therefore

possible to design very accurate and simple equivalent

circuits. For example, if only the fundamental mode is

propagating at either side of the discontinuity and if we

retain the dynamical behaviour of the first higher order

modes on each side, we obtain the equivalent circuit of Fig.

3. This equivalent circuit can then be used to model

cascaded dkcontinuities. An example in this sense is

provided by Fig. 4, that compares the experimental results

obtained by Bosma (dots) [2] with the numerical results

(obtained using only one basis function) in the cases of thick
(continuous curve) and thin (dotted line) iris. The

importance of taking into account the finite thickness of the

iris discontinuity is evident.

CONCLUSIONS

The classical problem of coupled E–plane step discontinuities
has been reconsidered. It has been shown that including
the edge condition it is possible to find a basis that, with
only one or at maximum two terms, represents, to a high

degree of precision, the field aperture. The frequency
dependence of the problem has been considered and

simplified by assuming the equivalent lumped representation

of the modal admittances. As a result a simple,
broad-band, equivalent circuit has been given that provides

an efficient tool for CAD analysis of cascaded dkcontinuties.
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F&. 3 Equivalent circuit corresponding

one-term approximation.

to the

Fig. 1 Geometry of the single E-plane step

1 2 3 4
s

Ref. [1]

0.2 .6794 .6793 .6793 .6793 .6791
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TABLE I
c

The modulus of the reflection coefficient reported in

columns, 1, . . ...4 is obtained using respectively 1,2,....,4,

basis function to reuresent the field on the aperture. The

Fig. 2 Equivsl& circuit of the modal admittance
results in column ~ are taken from [1] where two basis

functions were used.
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a) F=8GHZ

b) F = 12 GHz

TA8LE II

Modulus of the reflection coefficient for two different heights

of the step (s = 0.2, 0.8) and two values of frequency for a

standard X–band waveguide. NY represents the number of
basis functions used

aperture.
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TRANSMISSION COEFFICIENT

thick thin
iris iris

—..

1.1

I
1

.9

.8

.7

.6

.5

.4
.1 1 10

d(cm)

Fig. 4 Comparison of the experimental results

of [2] with our numerical simulation.

The geometry of the discontinuity is

shown in the inset.


