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ABSTRACT

Cascaded E-plane steps in waveguide still find a variety of
uses in microwave components for power applications and in
millimetrics.

Wideband synthesis requires efficient field analysis, leading to
simple equivalent circuits with frequency independent
elements, so as to avoid repeating the field analysis at each
frequency.

We present the results of an analytical approach in a form
suitable for CAD on a desktop computer.

INTRODUCTION

The widely wused modal analysis of waveguide step
discontinuties employs the eigenmode of the guiding
structures to represent the field on the discontinuities.
Unfortunately, even if the eigenmodes form a complete
basis, their use is particularly inefficient when field's
singularities due to the edges are present. On the other
hand, in these cases other bases can be used that represent
the fields well. By using the latter bases, it is possible to
obtain very accurate determination of the parameters of the
discontinuity (e.g. the reflection coefficient or the
admittance) even using a single basis function. If, in
addition, lumped models are provided for the modal
admittance, then simple, wide-band, equivalent circuits can
be derived. Since these circuits contain frequency
independent elements only, they can be efficiently used in
CAD.

ANALYSIS

When an electromagnetic field impinges on the discontinuity
of Figure 1 higher order modes are excited in order to
satisfy the boundary conditions. However, if the incident
mode has no eclectric field component in the x-direction,
only LSE modes are generated. These modes can be
derived from an x-directed magnetic vector potential.
Standard textbook analysis provides the expressions for the
field components transverse to the discontinuity. In the
following we assume, with respect to Fig. 1, that p modes
can be incident on the discontinuity from the left, and that
p' modes can be incident from the right.

By imposing the continuity of the transverse field across the
aperature, and by using linearity, we obtain the following
integral equations for the electric field Ej
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1 ~
Yk/zgk = YEx (1)

where Yy is the normalised admittance of the mode k
incident on the discontinuity, and gy represents
the y dependence of this mode. Y is the integral
operator whose kernal is the Green's admittance
function in the scattering representation and is
given by

1 o
Y(y,m = 5 2o [¥n #a0 enlm + X} o) pp(n]

(2)

where the ¢, (y) describe the y-dependence of the
modes.

Once Ei is found the scattering matrix is easily
computed as

1

Sik = Yi/z < gi, Ex > - 8jx (3)
with

5 0 i#zk

ik = 11 i=k

To solve the integral equation (3) by Galerkin method an
appropriate, preferably orthonormal, set of expanding
functions must be selected. Since the weight function of
the Gegenbauer polynomials of order » = 1/6 satisfy the 90°
corner edge condition, these weighted polynomials can be
successfully chosen as the expansion set. According to the
even parity of the field, and taking into account the
normalisation factor Ny, the expansion set yy,(y) is

1 1 /e 1Y
Yn(¥) = — — C4 [l wy) m=0,1, ..., N-1
= G [5]
(4)
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and consequently the field Ey is expressed as
N-1
Eg(y) = X Ay ¥m(Y) (5)
m=0
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When (5) is used the equations (1) are
correspondingly mapped into the matrix equations

1
v, " = x (6)

where the matrix elements are given by
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T /ae2m)] 72 ,
Cp = [-1]m [————] 2n+ 1/6) 77
(2m) !

Equation (6) is numerically invertible and leads
via (3) to the sought variational expression for
the scattering matrix

/2 T -1 1/2
sik=v,/ el X gy

- 0ik (8)
However, in practice, one is interested in the
scattering matrix over a wide frequency band, and
this means that one should recalculate the matrix
Y and its inverse for each frequency point. As
will be evident form the next section, the
dimensions of matrix X, due to the chosen basis,
are very small (i.e. X is 1%1 or at maximum 2+%2)
and therefore its inversion is a straightforward
matter. The time-consuming task in the
calculation of (8) is therefore relative to the
sum appearing in (7).

The numerical effort of computing (7) can be
greatly reduced by taking advantage of the
quasi-static approximation for the modes well below
cutoff (n > NF1, NF2)
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where u is the normalised frequency and is such
that u = 0 at cutoff of the fundamental mode and
u = 1 at that of the first higher order LSE mode in
the larger guide. By using this approximation we

obtain

1 . NF1-1 NF2-1
Y, = — x Y,, P, P + 1 pr v
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and while the expression inside the first brackets
needs to be recalculated at such frequency, the
other expression needs to be calculated just once.
Equation (9) still doesn't provide a simple
equivalent circuit. This can be obtained by
expanding the modal admittances into continuous
fractions up to the second order

2 ju

1 ju 1 ju 3 n

Y e e = - =
n~_ 4.2 3 n 1_2 u
/1'(5) 4 n?

Consequently Y,(u) can be represented to a high
degree of approximation by the lumped frequency
independent LC-ring of Fig. 2b. We are now in a
position to draw an entire class of equivalent
circuits depending on the different values of NF1
and NF2 retained, and to the number of basis
functions considered.

RESULTS

An extensive numerical analysis has been carried out in
order to ascertain the convergence of the basis function set
chosen to express the electric field in the aperture. In
table 1 the modulus of the reflection coefficient has been
calculated by using 1,...,4 basis functions incorporating the
900 edge condition. These data have been compared with
the previous results obtained by Rozzi 1] using 2 basis
functions of the type used by Schwinger. Apart from
noting the excellent agreement, it is also possible to verify
that two basis functions always provide stable results, and
that even the first order approximation (one basis function
only) gives very accurate values. This is further confirmed
by the results of table II.

By using the theory developed in section 2 it is therefore
possible to design very accurate and simple equivalent
circuits. For example, if only the fundamental mode is
propagating at either side of the discontinuity and if we
retain the dynamical behaviour of the first higher order
modes on each side, we obtain the equivalent circuit of Fig.
3. This equivalent circuit can then be used to model
cascaded discontinuities. An example in this sense is
provided by Fig. 4, that compares the experimental results
obtained by Bosma (dots) 2]" with the numerical results
(obtained using only one basis function) in the cases of thick
(continuous curve) and thin (dotted line) iris. The
importance of taking into account the finite thickness of the
iris discontinuity is evident.

CONCLUSIONS

The classical problem of coupled E-plane step discontinuities
has been reconsidered. It has been shown that including
the edge condition it is possible to find a basis that, with
only one or at maximum two terms, represents, to a high
degree of precision, the field aperture. The frequency
dependence of the problem has been considered and
simplified by assuming the equivalent lumped representation
of the modal admittances. As a result a simple,
broad-band, equivalent circuit has been given that provides
an efficient tool for CAD analysis of cascaded discontinuties.
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Fig. 1 Geometry of the single E-plane step
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Fig, 2 Equivalent circuit of the modal admittance
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Fig. 3 Equivalent circuit corresponding to the

one—~term approximation.

= NY 1 2 3 4 Ref.[1]
0.2 | .6794 | .6793 | .6793 | .6793 | .6791
0.4 | .4483 | .4479 | .4479 | .4479 | .4478
0.6 | .2631 | .2620 | .2619 | .2619 | .2622
0.8 | .1170 | .1140 | .1139 | .1139 | .1143

TABLE 1

The modulus of the reflection coefficient reported in
columns, 1,....,4 is obtained using respectively 1,2,....,4,
basis function to represent the field on the aperture. The

results in column 5 are taken from [1] where two basis
functions were used.



1 2 3 4
s
0.2 .6732 .6731 .6731 .6731
0.8 .1142 L1126 L1126 L1126
a) F =8 GHz
NY 1 2 3 4
s
0.2 .7091 .7090 .7090 .7090
0.8 .1283 . 1205 .1204 .1204
b) F = 12 CGHz
TABLE 1I

Modulus of the reflection coefficient for two different heights
of the step (s = 0.2, 0.8) and two values of frequency for a
standard X-band waveguide. NY represents the number of
basis functions wused to approximate the field on the
aperture.

MODULUS TRANSMISSION COEFFICIENT
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Fig. 4 Comparison of the experimental results
of [2] with our numerical simulation.
The geometry of the discontinuity is

shown in the inset.
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